
 1

Advance Topics in
Software Engineering

Contribution to the Open Source Project,

Checkstyle
by Ioannis Sermetziadis

(iserm@dmst.aueb.gr)

Professor:
Diomidis Spinellis

Athens University of Economics and Business
Department of Management Science and Technology

Athens, 2006

mailto:iserm@dmst.aueb.gr

 2

Table of Contents

Table of Contents ... 2
1. Introduction: My decision to contribute to Checkstyle .. 3
2. Project Description.. 3

2.1 Checkstyle’s structure: How it works .. 4
2.2 Checkstyle’s GUI .. 5

3. My contribution to the Checkstyle.. 6
3.1 New check, ClassblanknessCheck.java... 6
3.2 Improvement of RedundantImportCheck.java functionality .. 6
3.3 New properties of StrictDuplicateCodeCheck.. 7
3.4 A new reporting method, JavaLogger.. 7
3.5 Changes to Checkstyle’s GUI ... 8

4. APPENDIX: .. 10
4.1 Source code:.. 10

ClassBlanknessCheck.java .. 10
Part of RedundantImportCheck.java, where I added code... 13
Code I added in StrictDuplicateCodeCheck.java .. 13
JavaLogger.java .. 14
Part of Main.java, where I added code .. 17
Part of ParseTreeInfoPanel.java, where I added code ... 18

4.2 Contact with the project’s administrator... 19
I wrote: ... 19
Oliver Burn wrote: .. 20

4.3 Track upload and administrator’s comment: .. 21

 3

1. Introduction: My decision to contribute to Checkstyle

After looking around in sourceforge.net for a long period, I had many
ideas of some projects that I could contribute to, such as text editors,
VoIP projects, sound streaming projects and many more. After this
search, there are many projects that I have included in my everyday use,
like ant, vim and 7-zip. When the lessons of the course, Advance Topics
in Software Engineering, started, I had the chance to be in a lab lesson,
and this was when I had my first experience with some Unix tools. Grep
was after on always in my mind as a genius program, mainly cause many
times before I was trying to find a short string among many text files, and
this task was something that always was really time consuming. Of
course, contributing to a tool like Grep sounded as something really
difficult mainly because of the programming language restriction, as the
only language I have been taught and I can fluently use is Java. I started
looking for a similar project implemented in Java and Checkstyle
appeared in my way.

Checking the style of Java code, is something really interesting and
useful. Many Open Source Projects have been implemented in Java, and
need to be kept in some coding standards, something that is really hard as
many people from all around the world write and contribute code to these
projects. As checkstyle is implemented in Java, it is OS independent.

2. Project Description

Checkstyle is a development tool to help programmers write Java code
that adheres to a coding standard. By default it supports the Sun Code
Conventions, but is highly configurable. It can be invoked with an ANT
task and a command line program. It is registered under GNU Library or
Lesser General Public License (LGPL), it consists of five main
developers and Oliver Burn is the main administrator of the project. It
was registered in sourceforge.net in the 20th of June in 2001 and 4.1
version in out since the 19th of December 2005. It is in the mature stage
now. At first, it was intended to check code layout issues, but since the
internal architecture was changed in version 3, more and more checks for
other purposes have been added. Some of these new checks have to do
with javadoc comments, naming conventions, headers, imports, size
violations, whitespace, modifiers, block checks, coding, class design,
duplicate code and metrics. There have also been written plug-ins, so that
checkstyle can be used from inside a developing environment. The

 4

project‘s implementation package consists of 268 java files or 55.596
lines of code or 1.809.547 bytes. The whole checkstyle’s package, that
also contains the JUnit tests and that these tests use consists of 599 java
files or 77824 lines of code or 2.502.288 bytes.

2.1 Checkstyle’s structure: How it works

Checkstyle consists of three main modules: a) FileSetChecks that take a
set of input files and fire error messages, b) Filters that filter audit events,
including error messages, for acceptance and c) AuditListeners, which
report accepted events. Modules are structured in a tree whose root is the
Checker module. Many checks are submodules of the TreeWalker, which
implements FileSetCheck module(interface). The TreeWalker operates by
separately transforming each of the Java source files into an abstract
syntax tree and then handing the result over to each of its submodules
which in turn have a look at certain aspects of the tree. Checkstyle obtains
a configuration from an XML document whose elements specify the
configuration's hierarchy of modules and their properties. When using
this tool from the command line you call the Main class of the default
package of the project “com.puppycrawl.tools.checkstyle”. This class
takes the tool’s arguments and calls the corresponding classes , to
implement the checks mentioned in the configuration ‘xml’ file which is
required when using the tool. Here are the arguments that can be given
when calling checkstyle:

-c configurationFile.xml

-n packageNamesFile - specify a package names file to use.

-f format - specify the output format. Options are "plain" for DefaultLogger.java,
"xml" for XMLLogger.java and "java" for JavaLogger.java (one of my inserts)

-p propertiesFile - specify a properties file to use.

-o file - specify the file to output to.

-r dir - specify the directory to traverse for Java source files.

Example of running the programme from the command line:
java com.puppycrawl.tools.checkstyle.Main -c sun_checks.xml -f plain -
o output.txt -r inputDir

More details of how Checkstyle works can be found on the project’s page
in sourceforge.net: http://checkstyle.sourceforge.net

http://checkstyle.sourceforge.net

 5

2.2 Checkstyle’s GUI

Checkstyle’s Gui is based on Java grammar and structure. It is used to
represent a java file’s structure which is generated through the ANTLR
parser. This parser is also used by TreeWalker when it is asked to
implement some checks. By using this tool, you can select a syntactically
correct Java source file, and ANTLR can transform a stream of characters
(a Java file) into a tree representation that reflects the structure of the
file.This command can be used from the command line to call
Checkstyle’s GUI:

java -classpath checkstyle-all-4.1.jar com.puppycrawl.tools.checkstyle.gui.Main

As you navigate from the root of the tree to one of the leafs, you'll notice
that the token type denotes smaller and smaller units of your source file.

 6

3. My contribution to the Checkstyle

At first, it was a bit hard for me to find a way to contribute to checkstyle.
The best way was to use it in real conditions and that was the right
moment as I had started working on a small project to which some friends
intended to contribute too. So, I was trying to find one more function,
which could also be used in the case of checking large projects to make
the code more understandable for the intensive readers.

3.1 New check, ClassblanknessCheck.java

The first thing that came to my mind was code understandability. An
important factor for that is the code’s clarity. In many cases, although the
code is not that difficult, code reading ends to be a difficult task. So, I
found out that a check which would count the percentage of the blank
lines of the block of a class would be really useful for these reasons.
Having many blank lines among the code lines, makes a class easier to
read. What I just had to do, was to create a class with the name of the
check, create a setter method(setMinBlankLines(int aMinBlankLines))
which sets the minimum percentage of the block’s blank lines and a
visitToken(DetailAST aAST) which calls the method
blanknessCounter(String[] class_lines, int startLine, int finishLine), and
implements the check by reporting a message if the output of the
blanknessCounter method is lower than mMinBlankLines, a private
double variable. VisitToken method has this standard name, as every
check extends Check abstract class and it is the method that manipulates
the source’s tree nodes. There is also an AutomaticBean class, which
manipulates the setter methods by transforming them to properties, which
can be set in the configuration (xml) file that calls the check and sets its
properties’ values.
Added code:
new class created, ClassblanknessCheck.java
in com.puppycrawl.tools.checkstyle.checks.whitespace package.

3.2 Improvement of RedundantImportCheck.java functionality

After having a look in the project’s tracker link, I found that
ReduntantImportCheck could just test if there is a duplicated import, an

 7

import of java.lang package or if an import comes from the same package
as the current package. It could not find any duplication if the same
package was imported twice from different hierarchy level. For example,
duplication like:
import java.io.*;
import java.io.File;
could not be found and reported, something that is important, as the class
File of the example is used twice. To implement this, one more check
should be add in the VisitToken method to check every import, if it starts
with the body of a wild-card import.
Added code:
- An “if” statement was added to RedundantImportCheck.java to check
if an import is already imported by a higher hierarchy level wild-card
import.

3.3 New properties of StrictDuplicateCodeCheck

Duplication code check, although working in a simple line by line way by
converting each of the source lines to a checksum which is checked
against to find duplicates, it ignores by default the import statements but
includes javadoc and whitespace lines. This check can be used in many
ways but it lacks flexibility. For this reason, adding some properties to
this check, despite its easy implementation, would make it much more
user configurable and useful.
Added code:
- Two setter methods were added in StrictDuplicateCodeCheck.java, to
set the values of the private boolean variables, mIgnoreImports and
mIgnoreComments, which then determine if the imports and the javadoc
comments will be ignored by the check or not. The variables’ default
values are left as they were.
- An “if” statement was added in the calcChecksum(String aLine) to
check the values of the added variables, mIgnoreImports and
mIgnoreComments, and finally calculate the checksum of every line (by
calling calcChecksum(String aLine) of the super class) or ignore it by
returning the IGNORE variable’s value.

3.4 A new reporting method, JavaLogger

After talking with the course’s Professor, I was given the idea of creating
a new reporting method. The report messages can appear next to the

 8

corresponding line of the source code instead of reporting the file name,
line number and the message, like DefaultLogger and XMLLogger do. All
the source code of the checked java files is copied to the output file and
the checkstyle messages next to the corresponding lines in the form of
java comments.

Added code:
- New file, JavaLogger.java, implements the new reporting way (which
implements AuditListener interface). It keeps two ArrayLists,
mJavaFilesList and mErrorsMessageList, which hold the names of the
checked files and the error messages. While reading the lines of the
checked files, it copies them to the output and adds the messages next to
the file’s line number that is mentioned in every error message.
- One more possible value to the project’s format argument is added in
Main.java of com.puppycrawl.tools.checkstyle package. When “-f
java” is given when checkstyle is called from the command line,
JavaLogger.java is used as an AuditListener.

3.5 Changes to Checkstyle’s GUI

Although left to the end of my contribution, I am really interested in
making some more changes to checkstyle’s GUI, as I did not have much
time to do as many as I intended. May be I will be able to go on with
some more changes in the future and this is something that I am going to
ask from the project’s administrator. What I managed to do was to create
a text area, where the source code of the selected java file appears. Also,
every time a file is selected, its name appears on the window’s title. The
changes I would like to go on with are to highlight the line of the source
code when an AST node of the abstract tree is selected, or to open the
corresponding AST node of the tree when a code’s line is selected or
execute individual checks and display the error messages on the text area
I have already created.
Added code:
- to ParseTreeInfoPanel.java in com.puppycrawl.tools.checkstyle.gui
package. A command was added in openFile(File aFile, final
Component aParent) to change the frame’s title to contain the selected
file’s name. Also some code was added in the class’s constructor which
creates a JTextArea in the frame’s panel. When a file is selected, the
source code lines of that file are copied in the JTextArea, which was
added in a JScrollPane, so that the user can scroll up and down to view
the source of the selected file. The code that reads the file’s source code
and copies it to the JTextArea was added in openFile(File aFile, final
Component aParent), which is called from the FileSelectionAction
class.

 9

Here the picture shows how the GUI looks after the changes I made.

 10

4. APPENDIX

4.1 Source code

ClassBlanknessCheck.java

//
// checkstyle: Checks Java source code for adherence to a set of rules.
// Copyright (C) 2001-2005 Oliver Burn
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//

package com.puppycrawl.tools.checkstyle.checks.whitespace;

import java.util.regex.*;

import com.puppycrawl.tools.checkstyle.api.Check;
import com.puppycrawl.tools.checkstyle.api.DetailAST;
import com.puppycrawl.tools.checkstyle.api.FullIdent;
import com.puppycrawl.tools.checkstyle.api.TokenTypes;

/**
 * <p>
 * Checks for the percentage of the blank lines of
 * a class's block. As blank lines are considered:
 * </p>
 *
 * These which are totally blank and match with regexp="^\s*$"
 * These which contain a '{' or '}' character with whitespace characters
around and
 * match with regexp="^\s*(}|\{)\s*$"
 *
 * <p>
 * An example of how to configure the check is:
 * </p>
 * <pre>

 11

 * <module name="ClassBlankness">
 * <property name="minBlankLines" value="int"/>
 * </module>
 * </pre>
 *
 * Compatible with Java 1.5 source.
 *
 * @author Ioannis Sermetziadis
 * @version 1.0
 */
public class ClassBlanknessCheck
 extends Check {

 /** default value for the minimum blank lines in a class*/
 private static final int MIN_BLANK_LLINES_IN_A_HUNDRENT_OF_LINES
= 20;

 /** give default value to mMinBlankLines*/
 private int mMinBlankLines =
MIN_BLANK_LLINES_IN_A_HUNDRENT_OF_LINES;

 /** variables to keep the lines of the first and last chind of a class's block */
 private static int mCheckStartLine, mCheckStartColumn, mCheckFinishLine;

 /** Creates a new instance of ClassBlankness */
 public ClassBlanknessCheck() {
 }

 /** {@inheritDoc} */
 public int[] getDefaultTokens()
 {
 return new int[]
 {TokenTypes.CLASS_DEF,
 };
 }
 public void setMinBlankLines(int aMinBlankLines)
 {

 mMinBlankLines = aMinBlankLines;
 }

 /** {@inheritDoc} */
 public void visitToken(DetailAST aAST)
 {

 if (aAST.getType() == TokenTypes.CLASS_DEF) {

 DetailAST objBlock = aAST.getLastChild();
 DetailAST child = objBlock.getLastChild();

 while(true) {
 //the class's block starts from the first '{'
 if(child.getType() == TokenTypes.LCURLY) {

 12

 mCheckStartLine = child.getLineNo();
 mCheckStartColumn = child.getColumnNo();
 break;
 }
 //the class's block ends with the last '}'
 else if(child.getType() == TokenTypes.RCURLY) {

 mCheckFinishLine = child.getLineNo();
 }

 child = child.getPreviousSibling();

 }

 String[] lines = getLines();
 int blankness = blanknessCounter(lines, mCheckStartLine,
mCheckFinishLine);
 if(blankness < mMinBlankLines) {

 log(mCheckStartLine, mCheckStartColumn, "blank.not.enough");
 }
 }

 }

 /** Counts the blankness of a block of a class and gives about an integer
 * with the percentage of a class's block's lines that are blank.*/

 private int blanknessCounter(String[] class_lines, int startLine, int finishLine)
 {
 int blank_counter = 0;
 int block_length;
 Pattern regExpPatern = Pattern.compile("^\\s*(}|\\{)?\\s*$");
 for(block_length = startLine - 1; block_length < finishLine; block_length++) {

 Matcher regExpMatcher =
regExpPatern.matcher(class_lines[block_length]);

 if(regExpMatcher.matches())
 blank_counter++;

 }
 return (int)(((double)blank_counter / (double)(finishLine - startLine)) * 100);
 }
}

 13

Part of RedundantImportCheck.java, where I added code

while (it.hasNext()) {
 final FullIdent full = (FullIdent) it.next();
 final String stringToCheck;

 //this algorithm can be added in api.Utils if needed several times
 if(full.getText().indexOf(".*") != -1)
 stringToCheck = full.getText().substring(0,
full.getText().lastIndexOf('.'));
 else
 stringToCheck = full.getText();

 if ((imp.getText().startsWith(stringToCheck) &&
!stringToCheck.equals(full.getText())) ||
 (imp.getText().equals(stringToCheck)) &&
stringToCheck.equals(full.getText())) {
 log(aAST.getLineNo(),
 aAST.getColumnNo(),
 "import.duplicate",
 new Integer(full.getLineNo()),
 imp.getText());
 }
 }

Code I added in StrictDuplicateCodeCheck.java

/**
 * Sets if imports will be ignored or not before the check starts
 *
 *@param mIgnoreImports must be set before
 * triggering a 'duplicate code' message. Default value = true
 */
 public void setIgnoreImports(boolean aIgnoreImports)
 {
 mIgnoreImports = aIgnoreImports;
 }

 /**
 * Sets if comments will be ignored or not before the check starts
 *
 *@param mIgnoreComments must be set before
 * triggering a 'duplicate code' message. Default value = false
 */
 public void setIgnoreComments(boolean aIgnoreComments)
 {
 mIgnoreComments = aIgnoreComments;
 }

 14

JavaLogger.java

//
// checkstyle: Checks Java source code for adherence to a set of rules.
// Copyright (C) 2001-2005 Oliver Burn
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
package com.puppycrawl.tools.checkstyle;

import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.util.ArrayList;

import com.puppycrawl.tools.checkstyle.api.AuditEvent;
import com.puppycrawl.tools.checkstyle.api.AuditListener;
import com.puppycrawl.tools.checkstyle.api.AutomaticBean;
import com.puppycrawl.tools.checkstyle.api.SeverityLevel;
import com.puppycrawl.tools.checkstyle.api.Utils;

/**
 * This class implements a Java logger.
 * Gives as an output a java file that contais the code
 * of the source file and the error logs as commnents next
 * to the corresponding lines of the code.
 *
 * @author Ioannis Sermetziadis
 */
public class JavaLogger
 extends AutomaticBean
 implements AuditListener
{
 /** cushion for avoiding StringBuffer.expandCapacity */
 private static final int BUFFER_CUSHION = 12;

 /** where to print the error messages **/
 private PrintWriter mOutputWriter;

 /** close error stream after use */

 15

 private boolean mCloseOutput;

 /** keeps errors's info and message */
 private ArrayList mErrorsMessageList;

 /** keeps a List of the files already checked and have an error */
 private ArrayList mJavaFilesList;

 /** Creates a new instance of JavaLogger */
 public JavaLogger(OutputStream aOS, boolean aCloseStreamsAfterUse)
 {
 mOutputWriter = new PrintWriter(aOS);
 mCloseOutput = aCloseStreamsAfterUse;
 mJavaFilesList = new ArrayList();
 mErrorsMessageList = new ArrayList();

 }

 public void addError(AuditEvent aEvt)
 {
 final SeverityLevel severityLevel = aEvt.getSeverityLevel();
 if (!SeverityLevel.IGNORE.equals(severityLevel)) {

 final String fileName = aEvt.getFileName();
 final String message = aEvt.getMessage();

 if(!mJavaFilesList.isEmpty()) {
 if(!mJavaFilesList.contains(fileName)) {
 mJavaFilesList.add(fileName);

 }
 }
 else {
 mJavaFilesList.add(fileName);
 }

 // avoid StringBuffer.expandCapacity
 final int bufLen = fileName.length() + message.length()
 + BUFFER_CUSHION;
 final StringBuffer sb = new StringBuffer(bufLen);

 sb.append(fileName);
 sb.append(':').append(aEvt.getLine());
 if (aEvt.getColumn() > 0) {

 sb.append(':').append(aEvt.getColumn());
 }
 if (SeverityLevel.WARNING.equals(severityLevel)) {

 sb.append(": warning");
 }
 sb.append(": ").append(message);

 16

 mErrorsMessageList.add(sb.toString());

 }

 }

 /** {@inheritDoc} */
 public void addException(AuditEvent aEvt, Throwable aThrowable)
 {
 mErrorsMessageList.add("Error auditing: " + aEvt.getFileName());

 }

 /** {@inheritDoc} */
 public void auditStarted(AuditEvent aEvt)
 {
 mOutputWriter.println("// Starting audit...");
 }

 /** {@inheritDoc} */
 public void fileFinished(AuditEvent aEvt)
 {
 }

 /** {@inheritDoc} */
 public void fileStarted(AuditEvent aEvt)
 {
 }

 /** {@inheritDoc} */
 public void auditFinished(AuditEvent aEvt)
 {
 closeStreams();
 mOutputWriter.println("Audit done.");
 if (mCloseOutput) {
 mOutputWriter.close();
 }
 }

 /**
 * Collects and flushes the output streams and closes them if needed.
 */
 protected void closeStreams()
 { StringBuffer sb = new StringBuffer();

 try
 {
 for(int i = 0; i < mJavaFilesList.size(); i++) {
 String fileName = mJavaFilesList.get(i).toString();
 String[] contentLines = Utils.getLines(fileName);

 for(int u = 0; u < contentLines.length; u++) {
 sb.append(contentLines[u]);

 for(int y = 0; y < mErrorsMessageList.size(); y++) {

 17

 if((mErrorsMessageList.get(y).toString().indexOf(fileName) != -1)) {
 if(mErrorsMessageList.get(y).toString().startsWith("Error")) {
 sb.append("//" + mErrorsMessageList.get(y).toString());
 mErrorsMessageList.remove(y);
 }
 else if(mErrorsMessageList.get(y).toString().indexOf(fileName +
":" + (u + 1) + ":") != -1) {
 sb.append("//" + mErrorsMessageList.get(y).toString());
 mErrorsMessageList.remove(y);
 }
 }

 }
 sb.append("\n");

 }
 }
 }
 catch(IOException e)
 {
 System.out.println("Cannot access the files, giving up: "
 + e.getMessage());
 }
 mOutputWriter.println(sb);
 mOutputWriter.flush();
 }

 public ArrayList getErrors() {
 return mErrorsMessageList;
 }
}

Part of Main.java, where I added code

private static AuditListener createListener(CommandLine aLine,
 OutputStream aOut,
 boolean aCloseOut)
 {
 final String format =
 aLine.hasOption("f") ? aLine.getOptionValue("f") : "plain";

 AuditListener listener = null;
 if ("xml".equals(format)) {
 listener = new XMLLogger(aOut, aCloseOut);
 }
 else if ("plain".equals(format)) {
 listener = new DefaultLogger(aOut, aCloseOut);
 }
 else if ("java".equals(format)) {
 listener = new JavaLogger(aOut, aCloseOut);
 }
 else {
 System.out.println("Invalid format: (" + format
 + "). Must be 'plain', 'xml' or 'java'.");

 18

 usage();
 }
 return listener; }

Part of ParseTreeInfoPanel.java, where I added code

public ParseTreeInfoPanel()
 {
 setLayout(new BorderLayout());

 DetailAST treeRoot = null;
 mParseTreeModel = new ParseTreeModel(treeRoot);
 mTreeTable = new JTreeTable(mParseTreeModel);
 final JScrollPane sp = new JScrollPane(mTreeTable);
 this.add(sp, BorderLayout.NORTH);

 final JButton fileSelectionButton =
 new JButton(new FileSelectionAction());

 reloadAction = new ReloadAction();
 reloadAction.setEnabled(false);
 final JButton reloadButton = new JButton(reloadAction);

 mJTextArea = new JTextArea(20, 15);
 mJTextArea.setEditable(false);

 final JScrollPane sp2 = new JScrollPane(mJTextArea);
 this.add(sp2, BorderLayout.CENTER);

 final JPanel p = new JPanel(new GridLayout(1,2));
 this.add(p, BorderLayout.SOUTH);
 p.add(fileSelectionButton);
 p.add(reloadButton);

 try {
 // TODO: creating an object for the side effect of the constructor
 // and then ignoring the object looks strange.
 new FileDrop(sp, new FileDropListener(sp));
 }
 catch (TooManyListenersException ex)
 {
 showErrorDialog(null, "Cannot initialize Drag and Drop support");
 }

 }

public void openFile(File aFile, final Component aParent)
 {
 if (aFile != null) {
 try {
 Main.frame.setTitle("Checkstyle : " + aFile.getName());
 DetailAST parseTree = parseFile(aFile.getAbsolutePath());
 mParseTreeModel.setParseTree(parseTree);

 19

 mCurrentFile = aFile;
 mLastDirectory = aFile.getParentFile();
 reloadAction.setEnabled(true);

 String[] sourceLines = Utils.getLines(aFile.getName());
 /* clean the text area before inserting the lines of the new file **/
 if(mJTextArea.getText().length() != 0)
 mJTextArea.replaceRange("", 0, mJTextArea.getText().length());

 /* insert the contents of the file to the text area **/
 for(int i = 0; i < sourceLines.length; i++) {
 mJTextArea.append(sourceLines[i] + "\n");

 }
 /** move back to the top of the file */
 mJTextArea.moveCaretPosition(0);

 }
 catch (IOException ex) {
 showErrorDialog(
 aParent,
 "Could not open " + aFile + ": " + ex.getMessage());
 }
 catch (ANTLRException ex) {
 showErrorDialog(
 aParent,
 "Could not parse " + aFile + ": " + ex.getMessage());
 }
 }
 }

4.2 Contact with the project’s administrator

I wrote:

Hi, my name is John Sermetziadis and I am an undergraduate student of Software
Engineering in Greece. As far as a course is concerned, “Advance Topics in Software
Engineering” I have to make a contribution to an open-source project. So, I decided that I
would like to contribute to “checkstyle".

Do you have any suggestions of any new kind of checks, I could develop or of any changes
that you would like to be made to the existing checks?

Some ideas I have, as far as I am using the software, are:
1. There could be a check of code “clearness” which would simply check how many
blank lines (as a parameter) there should be inside a 100 lines class or how many spaces
there should be inside an 10,000 char class so that the code to be at a minimum level as
clear as possible to be read by other programmers.

2. I noticed that when using the RedundantImport it doesn’t report it if I import twice a
class like that:

 import java.io.*;
 import java.io.File;

 20

Don’t you think it should? The class File isn’t imported twice?

3. Do you think it’s useful to extend the “UnusedImports” so that I can support wild-card
imports like import java.io.*; ?

4. Finally, in my opinion, in the StrictDuplicateCode check there should be provided some
properties’ options (boolean properties), whether to ignore or not javadoc comments or
whitespace lines between methods. What do you think about that?

Thank you for your time! If you have any ideas, I would be glad to hear them.
--
This message has been sent to you, a registered SourceForge.net user, by another site user,
through the SourceForge.net site. This message has been delivered to your SourceForge.net
mail alias. You may reply to this message using the "Reply" feature of your email client, or
using the messaging facility of SourceForge.net at:
https://sourceforge.net/sendmessage.php?touser=1473526

Oliver Burn wrote:

Hi John,

Are you based in Athens? I fondly remember visiting Greece in 1993 while
backpacking in Europe. Had a great time there.

Glad you would like to contribute to Checkstyle. Interesting to hear that it is a requirement for
part of your course. We are always keen to get contributions, and have written a page
outlining the best way – it is at http://checkstyle.sourceforge.net/contributing.html.

For ideas of what Checks people are interested in, look at the Requests area at
http://sourceforge.net/tracker/?atid=397081&group_id=29721&func=browse.
There are also ideas mixed in with the bugs at
http://sourceforge.net/tracker/?atid=397078&group_id=29721&func=browse.

To answer you specific questions:

1. It is an interesting idea. Curious as to what you think is a good measure. In a 100 line
class, how many blanks lines should I have?

2. Technically you are correct, and this would be a good feature. Personally I never use the
star import format so it has not been a problem for me.

3. This would be a hard change. If you look at the current implementation, it uses a very
simple algorithm (actually a brain dead one), that in practice is very accurate. The only
downside is that it cannot handle star imports. To support star imports would introduce the
need for the check to understand Java types.

4. A good idea.

Let me know how you go.

Regards,
Oliver

https://sourceforge.net/sendmessage.php?touser=1473526
http://checkstyle.sourceforge.net/contributing.html
http://sourceforge.net/tracker/?atid=397081&group_id=29721&func=browse
http://sourceforge.net/tracker/?atid=397078&group_id=29721&func=browse

 21

4.3 Track upload and administrator’s comment

[1499180] New check, new Logger & more

Submitted By:
sermojohn

Date Submitted:
2006-06-02 01:24

Last Updated By:
sermojohn - Attachment added

Date Last Updated:
2006-06-02 04:57

Number of Comments:
2

Number of Attachments:
2

Data Type:
No Change

Submit Changes

Category:

Group:

Assigned To:

oburn
Priority:

5 - Medium
Status:

Open

Resolution:
None

Summary:

Date: 2006-06-02 02:16
Sender: oburn
Logged In: YES
user_id=218824

Thanks - they sound like very useful changes. I will
hopefully check them out over the next week. It is hard to
find time with a newborn at home. :-)

