
ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΤΜΗΜΑ : ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ

ΤΕΧΝΟΛΟΓΙΑΣ

ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ
ΛΟΓΙΣΜΙΚΟΥ

∆ιδάσκων: ∆. Σπινέλλης

Φοιτήτρια: Καζάκη Αργυρώ (8010044)

Simulus 1

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

1. INTRODUCTION

1.1 A BRIEF PRESENTATION OF SIMULUS

Simulus is a star simulation application, designed mostly for amateurs

interested in astronomy. It provides the user with a nice GUI (Graphical

User Interface) presenting a simulation of a number of stars distributed

in a sphere. The viewpoint circles around the sphere and creates the

impression of a rotating sphere.

Figure 1

Simulus 2

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

Figure 1 is a screenshot taken for the application (a bigger screenshot of

the entire application would make the stars invisible). On the left side of

the viewing screen, there is a menu for defining certain attributes like

gravity, number of the stars studied, zoom, speed etc, which are essential

for the star simulation. When the application runs for the first time, some

default values are loaded which have been decided from the designer of

Simulus. If the user presses the button marked as “Edit”, is allowed to

change any of these parameters. During this procedure the viewer stops,

and once the new attributes have been set, it starts again loading the new

values. Finally, when Simulus is been shut down by the user, the latest

values set for the attributes are stored, consequently, simulation next

time will begin with these values set.

1.2 TECHNICAL FEATURES

Simulus is entirely written in java and it’s a platform independent

application. For its graphical interface, designer/developer has used both

java.awt and javax.swing packages.

Application, uses 8 main attributes to perform the simulation:

gamma •

•

•

•

•

•

•

•

radius

stars

sensitivity

snapshot

movement

deltat

zoom

Simulus 3

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

These are stored in a .properties file named mulumis.properties

Every time a change of those variables takes place, simulation stops,

mulumus.properties is resaved. Actually, the .properties file is been

reproduced form the beginning even if the smallest change occurs, and

overrides the old one. And this happens also, when the application is

loaded for the first time (with the default values of course).

2. ENHANCEMENTS

2.1 THE REASON WHY

Although Simulus can prove to be a quite useful tool for the amateurs

that want to study star simulation, its design and structure reveals some

drawbacks. The application stores and loads only one set of values per

time, without giving the user the chance to save some data. Students or

astronomers, while experimenting, tend to keep several notes on the

observations made, and more often than not, go back on previous

experiments to make comparisons. Unfortunately, Simulus lacks these

potentials, so in my opinion, a few enhancements should be made, in

order to make the application user-friendly or client-based (either way).

So, during this project I managed to implement the following features.

2.2 SAVE PARAMETERS

The first thing I changed on Simulus was while shutdown when I asked

for the default values to be restored, no matter the changes, so that the

application always starts loading its default values. The designer had

Simulus 4

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

already implemented the method I needed, so the only thing I did was

just adding the following line:

simulumProperties.resetToDefaultValues();

Furthermore a JButton labeled as “Save” has been added to the

application frame (with extra attention to the layout). Using this option,

the user is given the possibility to save the set of values for the attributes

of the star simulation added. So later on he can refer back to it, without

having to type them again. A new .properties file named after the current

day and time is been created, storing these values.

Figure 2

Simulus 5

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

2.3 EXPORT PARAMETERS

Previously, when referring to user-friendly applications, I meant that a

developer must try to make things for him as easier as possible and

satisfy his demands. From this point of view, think the application

simultaneously I realized that saving the parameters studied is indeed

very helpful, but not the ideal if the user is performing an essay. In that

case having written down every experiment he made is essential for him,

so the solution I came up with was exporting the parameters saved to a

.txt file. So, once the parameters are saved, a pop up dialog box appears,

asking the user if he wishes to export this data.

 Figure 3

If the user wishes so, a .txt file is created containing the parameters

saved. After some studying the Java API, I realized that exporting data

may sound like a difficult or complex process, but is indeed a few well

organized lines of code. Mine was:

Simulus 6

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

File file = new File(getParams("exportPath"));

FileWriter fw=null;

 try {

 fw =new FileWriter(file);

 } catch (IOException fnf){

 System.out.println("Error opening file: " + fnf);

 }

 BufferedWriter bf = new BufferedWriter(fw);

 try {

 bf.write("New Simulum Properties Profile : " + dateModified);

…. and so on. At this point, I will have to remind that I am not letting the

user to decide the path that the exported file will be located. I have

chosen the path and a standard name for it and placed it in a separate

properties file. Of course the user can later change all these and it would

be fine by me.

Figure 4

Simulus 7

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

2.4 OPEN PARAMETERS

So, the user is given the possibility to store the attribute values of his

experiments, so he must be given a way to use these. A new JButton

marked as “Open” was placed next to the “Save” one.

Figure 5

So, the user presses the “Open” button. A JFileChooser appears on

screen, and asks for the path of the property file. Once the user provides

the application with the path, the attributes are loaded and the simulation

is on again.

Simulus 8

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

Figure 5

The code used for opening the property file was a small collection of

getParams() methods which reads the parameter values from the

property file. This time to arguments where given: the parameter name,

and the path for the .properties file (as collected from the JFileChooser

using getAbsolutePath() method.

Simulus 9

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

2.5 PRINT PARAMETERS

Finally printing the set of values, saved and exported, through the

application, would be ideal for the potential user. The following class is

an example of how a printing option could be implemented. It is not

currently bound to the rest of the source code and possibly needs some

debugging, as I am working at home and I don’t own a printer to test

this. Compiling it though, seems ok.

public class PrintParameters {

 private DocPrintJob job = null;

 private PrintRequestAttributeSet pras = null;

 private DocFlavor flavor = null;

 private PrintService service = null;

 private PrintJobListener pjlistener = null;

 /** Creates a new instance of PrintParameters */

 public PrintParameters() {

 flavor = DocFlavor.INPUT_STREAM.AUTOSENSE;

 pras = new HashPrintRequestAttributeSet();

 PrintService printService[] =

 PrintServiceLookup.lookupPrintServices(null,null);

Simulus 10

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

PrintService defaultService =

 PrintServiceLookup.lookupDefaultPrintService();

 service = ServiceUI.printDialog(null, 200, 200,

 printService, defaultService, flavor, pras);

 pjlistener = new PrintJobAdapter() {

 public void printDataTransferCompleted(PrintJobEvent e) {

 System.out.println("Printing completed");

 }

 public void printJobCompleted(PrintJobEvent pje) {

 }

 };

 }

 public void print(FileInputStream fis) {

 DocAttributeSet das = new HashDocAttributeSet();

 Doc doc = new SimpleDoc(fis, flavor, das);

 if (service != null) {

Simulus 11

ΤΜΗΜΑ ∆ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΕΙ∆ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

 job = service.createPrintJob();

 job.addPrintJobListener(pjlistener);

 }

 try {

 job.print(doc, pras);

 } catch (PrintException pe) {

 pe.printStackTrace();

 }

 }

}

3. NOTES

Reading the existing code and understanding the way things work with

Simulus proved to be quite interesting and easy. The API provided along

with the application contributed to this fact.

I didn’t cooperate with the other members of the team that are currently

occupied with Simulus. I believe now that I could have made a better

choice concerning the project of the essay. Simulus (though fun and

interesting) hardly qualifies as popular or even good application. I wasn’t

even sure if the team needed those changes, as they were based on my

personal opinion and point of view. Maybe the original designer had

something else in mind.

Simulus 12

