
What’s on the menu…

Software Comprehension and Maintenance
April 2005

RF-IDs in the Kernel -- Episode II:
Revenge of the Modules

Achilleas Anagnostopoulos
(archie@istlab.dmst.aueb.gr)

Department of Management Science and Technology
Athens University Of Economics and Business

Flashback: What we are trying to accomplish

We need a unified
way for reading and
writing RF-ID tags

from our own
applications.

Event collector/dispatcher

Low level access to readers

Linux Kernel

Application

The proposed
solution involves a
specialized kernel

module for linux to
service this need.

The Roadmap or “Where are we now?”
Initial Concept

Select the best way to implement the module

Define Interface for “talking” to transponders

Define Interface for “talking” to applications

Plan of attack

We are here

Write and Test the module

Submit the module for evaluation

When merging code, size DOES matter!

#!/bin/bash

find -name "*.c" | xargs sed
'
s/\/\/.*$//
s/\/*.**\///g
/\/*/{

N
s/\/*.**\///g

}
/^[]*$/d
' | wc -l

A more accurate measurement of the C code in the kernel
3.805.028reveals the magic number

• How do we configure and
compile this spaghetti
code?

• What happens when our
module gets accepted for
the next kernel version?

• How does our module
“talk” to the kernel?

• How does a user app talk to
our module?

Interesting Questions:

DIY - Configuring and building the kernel
Forget about the console! Say Hi to graphical configuration!
Navigate to the folder where the source resides (usually /usr/src/linux)
and type: make xconfig

Drivers may be compiled
directly into the kernel OR
as separate modules which
are loaded on-demand.

Once you configured everything :

make modules
make bzImage

Then grab a coffee and wait :)

Our orphan module just found a home!

So, our module was accepted for the next version of the
kernel! What does this mean?

• It will be distributed with all subsequent versions of
the kernel.

• We have the responsibility of maintaining our module,
adding new features, fixing bugs and supplying any
relevant documentation to be included in the kernel docs.

• “You break it, you fix it!”
If changes to another module “break” our own module,
we don’t have to do anything! It’s up to the person who
submitted the changes in the first place to make it work.
The same rule also applies to our own module as well ;-)

A sneak-peek into the future (I)

• Our module will provide a virtual file system.

• A virtual file system is an abstraction to the real file
system and offers a unified interface to user applications.

Application Application Application

Linux VFS Interface

EXT3 SAMBA NFS RF-ID fs

A sneak-peek into the future (II)
• In our proposed File System, RF-ID tags are mapped
as special files which I like to call “R-Files”.

• You should be able to perform the following operations
on R-Files:

• Rename them so you may identify special tags easily.

• You should be able to organize RF-ID files into folders.

• Copy to other file systems. This involves the creation of
a normal file whose content is the RF-ID tag’s content.

• You can read them, write them and use them in
shell scripts just as any other ordinary file.

• However, deleting R-Files will not be supported.
What does “delete a RF-ID tag” mean anyway?

That’s all for now…

For more info:
Linux.com - Writing Your Own Loadable Kernel Module

http://howtos.linux.com/howtos/Module-HOWTO/x811.shtml&e=747

Kernel Hacking: An Introduction to Linux Kernel Programming
http://www.kernelhacking.org

Info on VFS on Linux (Parts I and II)
http://www.freeos.com/articles/3851/
http://www.freeos.com/articles/3838/

Devfs (Device File System) FAQ
http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

An Overview of the Proc Filesystem
http://linuxgazette.net/issue46/fink.html

Any Questions?

	What’s on the menu…
	Flashback: What we are trying to accomplish
	The Roadmap or “Where are we now?”
	When merging code, size DOES matter!
	DIY - Configuring and building the kernel
	Our orphan module just found a home!
	A sneak-peek into the future (I)
	A sneak-peek into the future (II)
	That’s all for now…

