

ZGRViewer:
A GraphViz DOT Visualizer

Contributing to an Open Source Project

Nikos Korfiatis
Department of Management Science and Technology

Athens University of Economics and Business
nkorf@eltrun.gr

 1

Contents

Introduction .. 3

1.1. Overview... 3
2. Background Information ... 4

2.1. The ZGRViewer Component Model 4
2.2. The DOT Language .. 8

3. Architectural Specification of ZGRViewer 10
3.1. Expressing our Perceptions for Contributing to the Project .. 11

4. Contributing to the Project.. 11
4.1. Source Code Maintainability .. Error! Bookmark not defined.
4.2. Our DIFF Error! Bookmark not defined.
4.3. Testing and Functionality .. 13

 2

Introduction

1.1. Overview
Scope of this report is to document our contribution to the open source
project ZGRViewer[1] which was done as part of the course “Software
Comprehension and Maintenance” , taught this semester by professor Diomidis
Spinellis. Following the course requirements we collaborated with Open
Source Developers in order to understand the process of open source
software development and to this end to contribute/implement some of
our perceptions to an interesting open source project. The project that we
finally choose to contribute was the ZGRViewer which is a GraphViz dot
source visualizer.

Following a formal way of communication we contacted the chief
developer of the application and addressed our thoughts about addressing
some functionality and usability issues through our contribution. The
original mail message that was send to Emanuell Pietriga (PhD, Visiting
Research Scientist, MIT/W3C) can be seen in Figure 1

Received: from gateway.nuxeo.com ([213.56.215.224]) by cosmos.eltrun.gr with Microsoft
SMTPSVC(5.0.2195.6713); Tue, 16 Mar 2004 09:47:22 +0200
MIME-Version: 1.0
Content-Type: multipart/alternative;
 boundary="----_=_NextPart_001_01C40B2A.EA42E100"
Received: from nuxeo.com (unknown [192.168.2.139]) by gateway.nuxeo.com (Postfix) with
ESMTP id 2E6551DC94 for <nkorf@eltrun.gr>; Tue, 16 Mar 2004 08:47:21 +0100 (CET)
X-MimeOLE: Produced By Microsoft Exchange V6.0.6375.0
content-class: urn:content-classes:message
Subject: Re: RFC - ZVGR Viewer
Date: Tue, 16 Mar 2004 10:47:21 +0300
Message-ID: <CA22BB1CDF3EF74EB522054264D167470A6E02@cosmos.eltrun.gr>
X-MS-Has-Attach:
X-MS-TNEF-Correlator:
Thread-Topic: RFC - ZVGR Viewer
Thread-Index: AcQLKurDn+MgTxxqQN+1KBJKoIgOeg==
From: "Emmanuel Pietriga" <epietriga@nuxeo.com>
To: "Nikos Korfiatis" <nkorf@eltrun.gr>

Hello,

I've added you as a developer to the ZVTM project. But before you commit
anything, could you give me more information about what you intend to do
exactly?

I'm not sure I understand what is the extra editor window you mention.
Is it a textual representation of the DOT file that you would be able to
edit from ZGRViewer so that you could then refresh the graph?

Thanks,
Emmanuel

--
Emmanuel Pietriga (epietriga@nuxeo.com)

 3

http://claribole.net

Nikos Korfiatis wrote:
> Dear Emmanuel
> My name is Nikos Korfiatis and i'm a software engineering student at
> Athens Greece. The reason that i'm sending you this email is to ask your
> permission to do some comits to the ZVGR Viewer. I like GraphViz because
> it generates clear graphs and is a very handfull tool. Although i find
> graphviz a very nice tool, i can't convince my colleagues to use it
> because they have been stack into the WYSIYG hell... I think i can add
> an extra editor window to allow user's edit their dot files and then
> parse them to the viewer. I think ZVGR Viewer could be an excellent
> frontent editor for the graphviz.
> If you agree you can add me to the developers of your project (sf acount
> name: nkorf)
>
> Cheers,
> Nikos

Figure 1: The mail message that was send to the developer including the reply

In terms of communication we had a good contact since the ideological
foundations of open source community are openness to everyone that has a
clear perception of the project and wants to contribute.
Next we give some background information about the nature of the
application, the context of use and the issues that are behind our
contribution and finally we present in technical terms the contribution that
was done to the existing source code of ZGRViewer.

2. Background Information
ZGRViewer is a wrapper application between the GraphViz graphics suite
(citation) and the “Z Visual Transformation Machine” developed at
Xerox-Inria Research Center Europe (?). By referring to ZGRViewer as a
wrapper application we mention that ZGRViewer cannot function
properly without these two programs/libraries installed. Following this
specification we provide some background information about the
components/libraries that ZGRViewer uses to complement it’s
functioning.

Development Status: 4 - Beta
Intended Audience: Developers, Science/Research
License: GNU Library or Lesser General Public License (LGPL)
Natural Language: English, French
Operating System: OS Independent
Programming Language: Java
Topic: Vector-Based, Viewers, Visualization, Build Tools

Figure 2: Sourceforge Project Info

2.1. The ZGRViewer Component Model
Component based software engineering is a modern trend to every aspects
of the Software Projects, from architectural design to testing and

 4

maintenance issues, software components are being used widely in order to
disseminate the programming effort, give a clarity into the resulted
application and finally foster the time required to develop the application.
ZGRViewer follows a component model as can be inferred from the
Figure 1.

Figure 3: The ZGRViewer Component Model

The main components of the ZGRViewer are:
� The GraphViz Graphics Suite

Graphviz [2] is a collection of Graph Drawing Tools containing
batch layout programs (such us dot, neato, fdp, twopi); a platform
for incremental layout (Dynagraph); customizable graph editors
(dotty, Grappa); a server for including graphs in Web pages
(WebDot); support for graphs as COM objects (Montage); utility
programs useful in graph visualization; and libraries for attributed
graphs. The features and the functionality of GraphViz programs
began to expand at the beginning of 2000 following a decision of
ATTs Bell Labs to release the software as an open source. Many and
different contributions have been made to Graphviz with most of
them being modifications to the contextual use of the GraphViz
such us using it to create different types of graphs to cover different
needs. We provide some examples at the end of this section.

o DOT
DOT is a part of the GraphViz suite that makes directed
graphs using advanced layout algorithms described in
(citation). DOT Visualizes a graph in four different faces:
First phase is to break any cycles which occur in the input
graph by reversing the internal direction of certain cyclic
edges. Secondly it assigns nodes to discrete ranks or levels
thus schematizing a non or less crossing virtual graph to be
computed in the third face. The fourth step sets
coordinates of nodes to keep edges short, and the final step
routes edge splines. DOT accepts input in the DOT
language which we will present following. This language
describes three kinds of objects: graphs, nodes, and edges.

 5

The main (outermost) graph can be directed (digraph) or
undirected graph. DOT only draws directed graphs.

Figure 4: The DOT Language Processing Model

o Neato
Neato works using a different algorithmic model in contrast
with DOT but it is compatible with it as it takes the same input
format (DOT Source) and global parameters. The main
principle which is behind Neato is that is uses an iterative
problem solver to find a “low energy” configuration in the
graph. Low energy is mentioned as placed between every pair of
nodes such that its length is set to the shortest path distance
between the endpoints. A comparative figure of the result of
the same source parsing by DOT and Neato can be seen
bellow:

Figure 5: The same declarative specification projected by DOT and Neato

DOT has a wide acceptance as a comfortable way of visualizing

 6

Contextual Uses of GraphViz

Doxygen DOT is used to create documentation diagrams for Software
UMLGraph DOT is used in the same context to create UML Class

Diagrams declared with the javadoc
Sqldot DOT is used to visualize the Database Schema from the

SQL Source
Bibliometrics Neato can be used to measure the co-authoring impact in

research publications
ISAViz Layout algorithms are being used to visualize RDF nodes

� Java Libraries

o Xerces XML APIs
ZGRViewer is a Java application that makes a light use of XML
in order to complement some functions that deal with
Input/Output or read from user parameters. Xerces is used to
provide the ability to process and parse xml data files that are
being used to store specific information related to the
application such us the user preferences. In our case
ZGRViewer needs to know where is the appropriate path to the
DOT and Neato executables, some user preferences such us
font antialiazing etc. Through the application when a parameter
has to be extracted from user preferences a Xerces Method is
being invoked to retrieve the value of the specific parameter.

� Zoomable Visual Transformation Machine (ZVTM)
ZVTM is also an open source project that has its roots in the work of
Emannuel Pietriga at the Xerox Research Center / INRIA France. The
basic feature of ZVTM is the ability to provide a coherent application
programming interface that can be used easily to provide the
functionality of a graph drawing application. Furthermore the Java2D
extensions that have been implemented within the engine provide a
convenient way to navigate through large settlements of graphs using a
2,5 D space diameter.

o Java2D Extension Model
As already mentioned ZVTM provides an extension to the
excisting Java2D drawing API making it easier to use by the
programmers. ZVTM has the word “Zoomable” in its word as
it provides an accelerated zoom function giving to the user the
perception that he is navigating through a 3D environment.
The actual fact is that the user when making a zoom to the
graph takes an accelerated transformation of the graph to
convenient his request giving him the illusion that he is behind
a 3D representation.

 7

o SVG Visualization Classes
The second major component of the ZVTM is the SVG
Visualization classes that are used to provide the graphical
representation. SVG is a graphics specification that is written as
an application of the XML and provides information on how to
display geometrical shapes and graphics in a viewer or a web
page. Practically most of the applications’ functionality relies
to this feature as the common point of the ZVTM and
Graphviz is the SVG input and output.

Beyond the application components a major issue is the input format that
ZGRViewer accepts as an input. Practically any file containing validated
DOT source is accepted and visualized immediately. To this end the DOT
Language specification and syntax is important to furthermore understand
the functionality of ZGRViewer and in the next section we provide some
information regarding the syntax of DOT Declarative Specifications.

2.2. The DOT Language
As already mentioned DOT and Neato use its own language to visualize the
results of an appropriate declarative specification:

digraph G
 {
// rankdir=LR ; // comment if you don’t want horizontal align
 node [shape=box];
 zgrviewer [label="ZGRViewer Application",shape=ellipse];
 graphviz [label="GraphViz Graphics Suite"];
 dot [label="DOT"];
 neato [label="Neato"];
 javalibraries [label="Java Libraries"];
 zvtm [label="Z Visual Transformation Machine"];
 java2d [label="Java2D Extension Model"];
 svg [label="SVG Visualization Classes"];
 xml [label="XML Parser APIs (XALAN,XERXES)"] ;
 zgrviewer ->graphviz ;
 graphviz ->dot ;
 graphviz ->neato ;
 zgrviewer ->zvtm;
 zvtm ->svg ;
 zvtm ->java2d ;
 zgrviewer ->javalibraries ;
 javalibraries -> xml ;
 }

Figure 6: A declarative Specification of the Figure 1

The Dot language specifies the following semantic entities:
� graph: Can be directed (digraph) or undirected

o each graph can have an identifier, in our example in fugure3
G is an id for the graph

� Each graph has an atribute list which is contained between two
brackets. An atribute list contains the main part of the specification

 8

such us nodes, subgraphs and properties
� Nodes represent the main entities of the graph and are

interconected using the edge operator “->”. Each node can have a
specific atribute list or the atributes can be inhereted by global
statements in the beginning of the graph. Furthermore DOT and
Neato accept global parameters in their call method invocation and
format their vizualization acordint to the values invoked.

In our example a global parameter regarding the shape of the node is
defined with the atribute box. This atribute can be ovewritten when it is
defined though an atribute list. In our example the shape of the node
labeled “ZGRViewer Application” is ellipse instead of box as defined in the
beginning of the file.

graph : [strict] (graph | digraph) [ID] '{' stmt_list '}'

stmt_list : [stmt [';'] [stmt_list]]
stmt : node_stmt

 | edge_stmt

 | attr_stmt

 | ID '=' ID
 | Subgraph

attr_stmt : (graph | node | edge) attr_list
attr_list : '[' [a_list] ']' [attr_list]

a_list : ID ['=' ID] [','] [a_list]
edge_stmt : (node_id | subgraph) edgeRHS [attr_list]

edgeRHS : edgeop (node_id | subgraph) [edgeRHS]

node_stmt : node_id [attr_list]

node_id : ID [port]

port : port_location [port_angle]

 | port_angle [port_location]

port_location : ':' ID
 | ':' '(' ID ',' ID ')'

port_angle : '@' ID
subgraph : [subgraph [ID]] '{' stmt_list '}'

 | subgraph ID
Figure 7: The DOT Grammar

DOT and Neato read the declarative specification and depending on the
input parameters it produces the output in a format depending on the
argument passing when the call of the visualization engine begins as can be
seen in the Figure 7

 9

Figure 8: DOT language excecution model

3. Architectural Specification of ZGRViewer
ZGRViewer is curently consisted of 14 classes and aproximately 119
methods. The functionality handled from each class is sumarized in the
table bellow:

Filename Functionality
ConfigManager.java Handles configuration parameters such us the

path where the DOT/Neato executables
relie.It uses xerces to access the user
preferences stored in an XML file.

DOTManager.java Handles Calls to the Graphviz DOT/Neato
Messages.java Handles the Messages tha are presented to the

user each time an operation demands them to
show.

PrefWindow.java Gui class to construct the interface for the
preferences window

PrintUtilities.java Handles the printing of the current
vizualization

ProgPanel.java Handles the progress bar that is displayed while
graphviz computes the SVG output.

TextViewer.java A simple class that act as a container for the
messages that are displayed when

Utils.java Contains various utility methods such us
checking for the version of JVM, the operating
Sytem etc.

WebBrowser.java When defined in the DOT Source this class
handles the calls to the apropriate web browser
in order to open the url

ZGRApplet.java A wrapper class to use ZGRViewer through a
web browser

ZgrAppletEvtHdlr.java Handles user interactions (button clicks etc)

 10

when ZGRViewer is deployed as Java Applet
ZgrvEvtHdlr.java Handles user interactions (button clicks etc)
ZGRViewer.java Contains the main method as along as with the

user interface specification (menu bar etc)

Beyond this classes our application use some other classes that are not part
of the Java Foundation Classes and require the apropriate jars in order to be
used during the program compilation. Some of this classes/packages are
summarized bellow:

Import Statement Functionality
com.xerox.VTM.engine.*; The main ZVTM engine classes
com.xerox.VTM.glyphs.*; Classes to handle interaction

with the visualized drawing
org.apache.xml.serialize.XMLSerializer; Several Classes from the Xerces

library to serialize

The call sequence of the ZGRViewer is documented in the following
figure:

3.1. Expressing our Perceptions for Contributing to
the Project

4. Contributing to the Project
Having clarified the goals of our contribution by using the application we
then had to configure our development environment in terms of soure
code control, compilation and deployment. ZGRViewer uses the Jar utility
in order to pack its classes into one file making the deployment process
much more easier as having to replase only one file each time we compiled
the programme.
Obtaining the source code was very easy by using the cvs access method

 11

that sourceforge provides to its’ registered users.

:pserver:nkorf@cvs.sf.net/cvsroot/zvtm/zgrviewer

The major issue that we had to address was the automation of the
development processes. Following the triple write->compile->deploy
we had to create a process specification in order to adress the issue of
software process automation. Since our development was caried out using
the Java Programming Language we considered reasonable to use a wide
accepted build tool by the java developers. ANT was the choise to
automate the process and a specification of the software process was
compiled as can be seen bellow:

<!-- $Id: build.xml,v 1.3 2004/04/05 17:47:34 nkorf Exp $ -->

<project default="dist" basedir=".">
 <!—Defining Basic Properties -->
 <property name="src" location="net/claribole/zgrviewer"/>
 <property name="dist" location="dist"/>
 <property name="lib" location="lib"/>

 <target name="init">
 <mkdir dir="${dist}"/>
 </target>

 <target name="compile" depends="init">

 <javac srcdir="${src}" destdir="${dist}"/>
 </target>

 <target name="dist" depends="compile">
 <jar jarfile="${lib}/zgrviewer.jar" basedir="${dist}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Figure 9: A simple ant Build file that we compiled for the project purposes

The second step was to integrate well our source code with the excisting
one in the application but not having it

 12

4.1. Testing and Functionality
In order to assure that nothing was harmed through our contribution we
decided to provide a test case using the JUnit API. This test cases assures
that when a file is loaded to the ZGRViewer and a request to edit it is being
made by the user then the file will load normally instead of making an
exception to the application. This is needed because the dot source file can
be simultaneusly accessed by the ZVTM methods or from the FileEditor
class that we have presented previously

 13

Bibliography
[1] Zgrviewer home page.

http://zvtm.sourceforge.net/zgrviewer.html.
Last Access Date: 2004/06/08.

[2] Stephen C. North Emden R. Gasner, Eleftherios Koutsofios and
Kiem-Phong Vo. A technique for drawing dricted graphs. IEEE
Transactions on Software Engineering, 19(3):124–230, May 1993.

 14

	Introduction
	Overview

	Background Information
	The ZGRViewer Component Model
	The DOT Language

	Architectural Specification of ZGRViewer
	Expressing our Perceptions for Contributing to the Project

	Contributing to the Project
	Testing and Functionality

